A series expansion for generalized harmonic functions

نویسندگان

چکیده

Abstract We consider a class of generalized harmonic functions in the open unit disc complex plane. Our main results concern canonical series expansion for such functions. Of particular interest is certain individual function which suitably normalized plays role an associated Poisson kernel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Series expansion of Wiener integrals via block pulse functions

In this paper, a suitable numerical method based on block pulse functions is introduced to approximate the Wiener integrals which the exact solution of them is not exist or it may be so hard to find their exact solutions. Furthermore, the error analysis of this method is given. Some numerical examples are provided which show that the approximation method has a good degree of accuracy. The main ...

متن کامل

A certain convolution approach for subclasses of univalent harmonic functions

In the present paper we study convolution properties for subclasses of univalent harmonic functions in the open unit disc and obtain some basic properties such as coefficient characterization and extreme points.  

متن کامل

A lower estimate of harmonic functions

We shall give a lower estimate of harmonic‎ ‎functions of order greater than one in a half space‎, ‎which‎ ‎generalize the result obtained by B‎. ‎Ya‎. ‎Levin in a half plane‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis and Mathematical Physics

سال: 2021

ISSN: ['1664-2368', '1664-235X']

DOI: https://doi.org/10.1007/s13324-021-00561-w